Analysis, control and augmentation of microcantilever deflections in bio-sensing systems
نویسندگان
چکیده
The main causes for the deflection of microcantilevers embedded in micromechanical biodetection systems are investigated. The primary deflection due to the chemical reaction between the analyte molecules and the receptor coating, which produces surface stresses on the receptor side is analyzed. Oscillating flow conditions, which are the main source of turbulence, are found to produce substantial deflections at relatively large frequency of turbulence. Bimaterial effects influencing the microcantilever deflections are established analytically, and found to be prominent at a relatively low frequency of turbulence. In the absence of bimaterial effects, turbulence increases the deflection due to chemical reactions at relatively large frequency of turbulence yet it increases the noise due to the increased dynamical effects of the flow on the microcantilever. The mechanical design and optimization of piezoresistive cantilevers for detecting changes in surface stress via finite element analysis is also discussed. The introduction of stress concentration regions (SCR) during cantilever fabrication greatly enhances the detection sensitivity. Biosensing experiments based on resonance frequency shift are presented, which show that the results strongly depend on the interaction of specific analytes with the receptor surface. Finally, novel microcantilever assemblies are presented for the first time that can increase the deflection due to chemical reaction while decreasing those due to flow dynamical effects. © 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Design and Electro-Thermo-Mechanical Behavior Analysis of Au/Si3N4 Bimorph Microcantilevers for Static Mode Sensing
This paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever. The results from the theoretical calculation and numerical analysis are compared with those measured ...
متن کاملAnalysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors
The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin...
متن کاملEffect of Conformational Entropy on the Nanomechanics of Microcantilever-Based Single-Stranded DNA Sensors
An entropy-controlled bending mechanism is presented to study the nanomechanics of microcantilever-based single-stranded DNA (ssDNA) sensors. First; the conformational free energy of the ssDNA layer is given with an improved scaling theory of thermal blobs considering the curvature effect; and the mechanical energy of the non-biological layer is described by Zhang’s two-variable method for lami...
متن کاملA Study on Increasing Sensitivity of Rectangular Microcantilevers Used in Biosensors
This study proposes a new microcantilever design with a rectangular hole at the fixed end of the cantilever that is more sensitive than conventional ones. A commercial finite element analysis software ANSYS is used to analyze it. The Stoney equation is first used to calculate the surface stress induced moment, and then applied to the microcantilever free end to produce deflection. The stress an...
متن کاملDynamic Modeling and Control of Integrated Micro- and Nano- systems: A.1. Coupled Flexural-Torsional Nonlinear Vibrations of PZT-actuated Microcantilevers: The problem of coupled flexural-torsional nonlinear vibrations of a piezoelectrically-actuated microcantilever beam as a typical configuration utilized in microcantilever-based sensing
The problem of coupled flexural-torsional nonlinear vibrations of a piezoelectrically-actuated microcantilever beam as a typical configuration utilized in microcantilever-based sensing is being investigated. The actuation and sensing are both facilitated through bonding a piezoelectric layer (here, ZnO) on the microcantilever surface. Considering different geometrical configurations for the bea...
متن کامل